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ABSTRACT

Thi- paper describes a procedure for computing the maximum likelihood

es imates of the parameters of the distribution of the sum of three inde-

pen&nt exponertial random variables. By fitting sample interevent time

da~a trom a r"al system to this distribution, one can create a simulation

of the system that exploits the regenerative representation of queueing

systems [3] to analyze the simulation's output by relatively elementary

statistical methods. The paper also describes computation of the sample

asymptotic covariance matrix and an implementation of the likelihood ratio

for testing six hypotheses that are special cases of interest. A set of

FORTRAN subroutines for executing these procedures appears in the Appendix.
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1. Introduction

The purpose of this paper is to describe a procedure for computing

the maximum likelihood estimates (MLE) of the parameters of the distri-

bution of the sum of three independent exponentially distributed random

variables. Although the case of equal parameters yields an Erlang distri-

bution, for which the MLE are known, the more general case has received

little attention in the statistical literature. Two possible reasons for

this omission occur to the writer. Firstly, since the corresponding MLE

equations are not amenable to analytical solution, one needs to employ

numerical analytic techniques to solve thenm. Conceptually, the presence

of multiple maxima makes this an onerous approach. Secondly, since the

distribution has three parameters, the principle of parsimony encourages

one to use alternative two parameter distributions whenever a fit of equal

or almost equal quality can be obtained. These distributions include the

gammaa, lognormal and Weibull. Chol and Wette [1] describe a procedure for

computing the gamma MLE. Thoman, Bain and Antle [13] describe a procedure

for computing the Weibull MLE. Although both procedures rely on the

,, Newton-Raphson iterative method no unusual problems arise. For the log-

normal distribution the KLE relate directly to the MLE for the corresponding

normal distribution. Johnson and Kotz [9) discuss issues related to the

,&LE for these distributions, including bias removal.

Given the attractions of alternative distributions, a relatively strong

justification for pursuing the research presented here seems in order.

Recent developments in the field of discrete event simulation provide this

justification. In [5,6] Fishman points out that in the simulation of
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queueing systems one could use the exit of the system from the empty and

idle state to demarcate the sample path of a stochastic process of interest

into independent segments each of which obeys the same probability law.

This demarcation enables one to use relatively elementary statistical

methods to compute point and interval estimates for population parameters

of interest [5,6]. The most appealing theoretical feature of this obser-

vation is that the i.i.d. property holds regardless of the distributions

of interarrival and service times. The most unappealing feature arises

when either the activity level increases or the number of servers increases

for a given activity level. In particular, the frequency with which the

system exits the empty and idle state declines dramatically. In turn,

this can result in excessively long simulation runs if one is determined

to collect a prespecified number of i.i.d. segments.

In (2) and [3] Crane and Iglehart introduce the more general notion

of a regenerative process into the analysis of simulation output. In

particular, any state can serve as a demarcating state, provided that

statistical behavior after entry into that state is independent of behavior

prior to entry and that the state occurs infinitely often. States with

these properties are called regenerative. If one can identify all such

states then one can use the most frequently occurring one to demarcate the

specified number of i.i.d. segments. If the interevent distributions are

exponential then all states can serve this demarcating purpose. Since

exponentiality is too restrictive an assumption in general, Crane and

Iglehart [4] attempt to identify approximate regenerative states. Their

procedure calls for a careful scrutiny of the particular system being

simulated.
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An alternative approach to realizing the regenerative property arises

when interevent times have continuous unimodal distributions. Then a

theoretical basis exists for approximating each of these distributions

by the distribution of the sum of an arbitrary number of independent

exponential random variables. In particular, one way to look at this is

to consider the polynomial approximation to the corresponding characteristic

function where the reciprocals of the roots of the polynomial, which are real

for unimodality, are the means of the exponential random variables.t If one

adopts this characterization then interevent times in the simulation become sums

of independent exponential random variables. Suppose, interarrival times are

representable as the sum of two independent exponential random variables

and service times are exponential. Then by adding a new entry to the

state vector that characterizes which of the two stages the next arrival

occupies, one provides the mechanism for realizing regenerative states.

If service times are representable as the sum of three independent ex-

ponential random variables then three additional entries in the state vector

to keep track of the number of jobs in each stage enable one to exploit the

regenerative property again. The price paid for this ability is the

increased bookkeeping for the state vector, an effic eit approach to which

is described in [7].

Although the foregoing discussion motivates the use of distributions

of sums of independent exponentials, a procedure for

implementing the approach is practice remains to be developed. Ideally,

one would like to fit such a distribution by the distribution of the sum

of a large number of exponential variates and,' through a formal hypothesis

testing procedure, reduce that sum to the minimal number necessary to

tThis ; a polynomial in iw where i
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account for variation in the data. The present paper describes a first

step in this direction in Section 2 by fitting the sum of three independent ex-

ponential random variables and then testing six hypotheses designed to

reduce the length of the state vector. In particular, Section 2 describes a

procedure for finding the MLE,their sample asymptotic covariance matrix

and for using the likelihood ratio to test hypotheses. The steps outlined

in Section 2 are implemented in a set of FORTRAN subroutines in the

Appendix.

I
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2. The Procedure

Let Y, YV2 and Y3  be independent random variables from E(a),

E(b) and E(c), respectively, where E(e) denotes the exponential

distribution

eX/O/0 0 :S x S 0 < e

(1) f(x)
0 elsewhere.

Then X YI + Y2 + V3  has the probability density function (p.d.f.)

(2) f(x,abc) ,g(x,a,b,c) + 9(x,bac) + g(x,ca,b)

where

O(Y-sooos•p.) o oe"X/O/ A 0)0P.

Given a sample XI,...,Xn from (2), we wish to compute S, b, a., the

MLE of a, b and c, respectively. These follow from maximization of

the likelihood function

n(4) L =If(X Va~b,c).

Here •, b, • asymptotically have the trivarlate normal distribution

with means a, b, and c, respectivelyand the minimum variance covariance

watrix , where [10]
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To obtain the MLE one usually solves

(6) a tn L n I af(Xs,a,b,c)
- - 1 0 o abc

3 1o i1 f(X ta,b,c) 3 o

simultaneously for a, b and c. In the present case (6) does not admit

an analytical solution. Moreover, the only sufficient statistics appear

to be XP,...,Xn which do little to ease the computational burden of a

numerical solution.

Feasible Region

Although the possibility of multiple maxima makes maximization of L

difficult in general, we can reduce swe of this difficulty by noting

that

(7) f(x~a~b,c) =f(x,a,c,b) =f(x,bta,c)

- f(xb.c,a) = f(xc.a,b)

- f(x,c,b,a) .
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This implies that L has at least 6 maxima of equal magnitude. Intro-

ducing the constraints

(8) a : b : c

removes this ambiguity. One can also show that

(9) a2  anL+b2  nL + c2 aen L =0

leads to

(10) a + + c =Y
nS=(1/n) •il Xi

Now the constraints (8) and (10) imply

a s 2c s

which define the feasible region in the a-c space of Figure 1 where

maximization of L is to occur.

The arcs and nodes of the feasible region in Figure 1 play a

special role here. In particular, arcs AB, BC and AC correspond to

hypotheses I, 2 and 3 in Table I and nodes B, A and C correspond to the

Erlang tiypotheses 4, 5 and 6. In addition to examining these special cases

In the process of maximization of L, one can use the likelihood ratio test

to evaluate the effect of assuming that one of these special cases repre-

sents the underlying structure of f in (1). This issue is discussed shortly.
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Figure I Feasible Region for tiLE

COMPutationlal Considerations

The search for a maxiamm for L has now been reSt~'cted to the tri-

angle in Figure I. The Set Of FORTRAN~ subprogram listed in the Appendix

effects a grid search on ain user specified Incrownts of 6 over

(0, '7/31 anid for each aPerfonus a binary search for Cý in
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Table I

Distributions and Derivatives Under Alter-native Hypotheses

Il H. f(x,a,b~c) af(x,a,b,c) ýf(x,a~bc) 'I)f(x,a~bc)
1 aa a b a__ c_____

0 a-ýbsc g(x,a~b,c)+g(x,b,a~c)+g(x,c~a,b) h,(x,a,b,, h1(bac) h 1 (x,cla,b)

1 a=O,b--c g(x,b,c,O)+g(x,c,b,O) Il h(xb~cO) h,(x,c~b.0)

2 a=bsc g(x,a,c,c)(x(a-c)-ac]la 2+g(x~c,a,a) h 3(x,c,a) - h 2(x a,c)

3 asb=c g(x,c a ,a)[x(c-a)-ac]Ic 2+g(x,a,c,c) h2(x,c,a) - h 3(x~a,c)

4 a~b=0<c g(x,c,0,0) - g(x,c,O,0)(X/C-l)/c

5 a-0.b-c xg(x~c,0,0)/c - xg(x~cO,0)(x/c-2)/c 2

6 a-b=C x 2g(x,c.0,0)/2c 2  _ ____ - - x 29(x,c,0,0)(x/c-3)/2c 3

2_2

hEXOP,(.*,)1PXP2 /po]gxopp[poxeoo](-~
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S[iX(-a/2,X(-2a to within the tolerance 6. The search for c solves

aZn L/ac = 0. Expression (10) yields b and the search for the maximum

is effected by computation and comparison of tn L for each computed set of

a, b and c. Since substantial experience with the UPDATE subroutine using

a complete grid search in ESTIMA failed to reveal more than one maximum,

ESTIMA was modified to terminate the search once a maximum has been found.

The ARC and NODE subroutines enable one to check the arcs AB, BC and

AC and the nodes A, B and C for solutions that might give improvement.

Also HYP123 and ERLANG use the results of ARC and NODE, respectively, to

test the hypotheses in Table 1.

Computation of Covariance Matrix

The estimation of the covariance matrix under Ho, H1, H2 and H uses

ae a 0 a 0a f(x,ab,c)

together with the expressions in Table 1 in ESTIMA and HYP123. These sub-

routines employ numerical integration, as described in [12, p.9231 to

evaluate • , using a, b, c in place of a, b and c respectively. Although

the weight, in the W and Y arrays apply for double precision computation,

exparvnce has shrwn little loss of accuracy by using single precision.

Figure 2 offers ai. example of the output for 100 observations drawn from

f(x, ,5,12).

I.ikelihood Ratio Test

Since parsimony c.learly has advantages in modeling, one wants to test



the hypotheses in Table 1 to see if one or two parameters can be elimi-

nated from the representation (1). Let L(X, ai, bl ci) denote the

maximum of the likelihood function under H. where i =0 corresponds

to (1) and X (X= For example, L(X~al~b tc1 ) =L(,X,~bl$c1 )

and L(Xla 2,b2 2c2) L(Y,~9a.2,c 2  Then the likelihood ratio

(13) R. L(A,a.1,U.1cI/Lv.,a bO~cQ) i =ý..s

Xlies in (0,1). The closer Riis to t'ity the maore credible is the

Shypothesis. Althouigh the distribution of R under H1  is beyond our

reach it is know, .ýc- as n increases the distribution of -2 tn R

converges to the chi-square distribution with degrees of freedom equal to

the number of constraints imposed by the hypothesis 1101. For H1 H2 and

H j 3  there is 1 degree of freedom; for H14. H 5-and H6. there are 2 degrees

of freedom. Therefore

'-(I -c,)/2

(14) pr(R 1 e

where X (1-4i denotes the I - critical value for f degrees of

freedom and f I for 1 l,....,3 and f 2 for 1 4...6

Table 2 shows critical values of R. corresponding to tests of selected

~tt~ sizes.
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4AXIMT1I¶ LIKPLTHOOD !?STIi¶W"I0N

P ?(X) G(X A B C) G (X 0, A C) +G (XC,cA B)

G (XT,TP R) T 'E XP (-X,'T) (T T- P) *(T -F))

N = 100 SAPIPLY MPAN= 0.2091472 02 SAMPLF V'APIA!CP= 0.250988? 03

DELTA= 0.697155E-02

A= 0.47~4065F 00 B= 0.159364F 01' C= 0.146639n 02

COVAPIAFCv. nATRtIX

0. 13736913 01 -0.3590121! 01 0.304326P 01

0.1958903 02 -0. 222481B 02

0.316986B 02

COPRELATTON 4%TRIX

0. 100000'r 04 -0,692003'0 00 0.4611847 00

0.100000B 01 -0.892826F 00

0.1001000? 01

HYPOTHESIS 1: Aw0. 6<=C

8= 0.6116436E 01 C= 0. 144 503IR 0 2

VAR (03)v 0. 170784P. 02 VAR C)= 0. 3614 12? 02 COV (8,C)=--. 231085?. 02

M0P(8*C)---0.930136F' 00

L1IKSLIHOOD PAfl0~' 0.7810S8P 00

HYPOTHESIS 2: Aza<=C

9v 0.2156664F 01 Cz 0.157813? 02

PAS(P)lm 0.5750249' 00 VAR (C),m C10291911 02 COV (B. C) w-0. 17154 32 01'1 ~~~COP q(RC)~-.0t?0
______ tYKMvI.T1i0C0 P.AIflOz 0.722563P 00
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HYPOTR•,$SS 3: A<---C

A= 0.272369F--01 C= 0.104437F' 02
T

V0R(A)= 0.255362v 00 VAR (C) 0.19508157P 00 C0V(&,C)=-0.j72593? 00

COPP(A,C)=-0.34c580F 00

LTKEL!HOOD RATIO= 0.575515F 00

IHYPOT.,ESIS 4: A=B=O

C= 0.209147F 02

.95 LOWEP POINT- 0.17"i17- 02 .95 UPPF? POINT= 0.257062B 02

L!KrLIHOOD RATIO= 0.198047r-04

lYPOTHESIS 5: A=O, B=C

C= 0.104573? G2

.95 LOVED POINT= 0.914665P 01 .95 UPPP" POINr- 0.120730P 02

LIKOLIOHOOD RATIO- 0.5637E3c O0

HYPOTHESXS 6: A=B=C

C= 0.697155P 01

.95 LOVM POINT= 0.62051q? 01 .4% UPPRP POINM= 0.783313? 01

LIKSLIHOOD RATIO= 0.67601P.-03

Figure 2 (continued)
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Tabl e 2

Critical Values of R for Tests of Selected Sizes

d.f. 0.01 0.025 0.05 0.10 0.25

1 0.9999 0.9995 0.9983 0.9921 0.9505

2 .9900 .9750 .9500 .9000 .7500

In the case of 2 d.f. the chi square distribution is E(l). There-

fore, R is the probability that under Hi (1=4,5,6) one would observe

a likelihood ratio less thant R1. For example, under H5  in Figure 2

R= 0.5658 and R2R 5 5= 0.3201.

Confidence Intervals

Let us first concentrate on H4 , H5 and H6 . Under Hi ci X/(i-3)

and n ci/c has the chi-square distribution with (i-3)n/2 degrees of

freedom. The ERLANG subroutine uses this fact to compute a confidence

interval for c and relies on the CHISQ subroutine to provide critical

values of chi-square.

For Ho, Hi, H2 and 113 no similar theory is available. However, if

n is sufficiently large, one can compute approximate individual confidence

intervals for a, b and c, using the estimated variances in the corresponding

covariance matrix. Experience with the set of subprograms in the appendix

has revealed that even for n ~ 100 the sample var(a), var(b), var(c) are

large relative to a, b and c respectively.

tHere R2 is called the P-value. See [8].
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Bias Considerations

In small and moderate size samples a, b and c are biased. In

particular, experience has shown that a overestimates a and c

underestimates c. Since c does most to affect the shape of the tail

of the distribution we especially want to consider ways of reducing bias

for this quantity. One approach to bias reduction uses the jaokknife

method [I1].

The elementary form of the jackknife method removes bias to order

l/n. Suppose c is computed using n observations and c(1 ) and c"(2 are

computed using the first m = n/2 observations and the last in = n/2

observations respectively. Then one can easily show that

(15) Z 2c - (c(l) + z )

is free from bias to order 1/n. Notice that the computation of c

requires 3 passes through the estimation procedure.

More powerful jackknife methods of bias reduction are available [11].

Our reluctance to incorporate any one of them into the estimation pro-

cedure is a consequence of the additional cost they imply. However, a

user of the estimation procedure in the Appendix can easily write a bias

reduction program to use in conjunction with ESTIMA.
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"4. Appendix"

SUJBBOUTINE ESINA(X.N.NUM)
C
COMMENT 1HTS SUBROUTINE CONDUCTS A GRTD SEARCH ON A IN INCREMENTS OF
C DSLTA
C

INTEGER I.JKMN.NNUM
REAL A.B.C.AS.BSCS.,AA(6).flB(6),CC(6),CORR(3,3),COV(3,3),D(3,3),

2 DELTa, DZN, Fv H (3) ,LCLIKE (6) , LLF, LOGXrIkXLLFUC, (15) X(N),
3 XBARv1SIJI'IT1)

D.TA W/.2395781703,,560 1008428,.9870082629, 1.22366440 215,
2 1.574A414872163,1.94475197653.2.34150205664.,2.774.04192683,
3 3.25564334640,3.80631171423,4.45847-775384,5. 27001778443,
4 6.35956306973,8.03178763212,11.5277721009/

DATA Y/.0933078120,.4926917403, 1.2155954121,2.2699b95262,
2 3.6676227218,5.lI253366274,7.5659162266,10.12022856800
3 13.1302824822,16.6544077083,20.7764788994.25.6238942268,
4 31.4075191698,38.5306833065,48.0260855727/

I+ . FONRAT(1H1,25XNAIIMUMt LIKELIHOOD ESTIMRTIONt!26X,*'.........
2------.--------- !//22Xe 0 F(I) =G (X#,A,,C) +G(X, BeAtC)+G (XCA*B) "//22x
3,'G(I.TePuPI=TKeXP(-X/T)/((T-P)*(T-P)) //4Xe'N=e•,I, SAMPLE N
*EANtC 113.6,0 SAMPLE VAPIANCE=',E13*6//3OX,*DELTA=',E13.6//12X5 ,.. I A ,91.6.0 Bs?1.0 C=9 t?13.6"//

2 PORMAT ( SPY HYP0T1H1SISt,2/////)
3 FORMAT (31X.fCOVAPTANC? MATPIX•//15X,3(•13.6,5X)//33X,2?R13.6*5X)/

2/51Xv13.6A/311K*COVRELATTON MATBIXO//1SX,3(E13.6,5X|//33X.2(213.6S3,5X) , //;X136!111/

XSUMSO
LOGX=O
DO 100 =1.N
LOGIeLOG1+ALOG (1 (I)

100 XSUM"XSMN+X (I)
XBAPIXSUM/Wt
A =0,.

D8LTA=XBAP/(3. *NUN)
M=NUM-1

LLPw0
DO 150 Twl.f
NA XLL?=tLP
AS - A
BS=B
CS=

This set of FORTRAN subroutines computes the maximum likelihood estimates of
a, b and c in f(xa~bc) for H0 through H6 in Table 1. X denotes the
floating point data array, N denotes the sample size and NUM denotes the
resolution OELTA = X/(3*NUN) for conducting the grid search.



LC=(XCAR-A)/2.
UC=XiAiR-2.* A
CALL UPDATF (X.NXBAPLC,UC.A,BC.CDBLTA*IlLtt)
IF (M¶AXLLF.FQ.O.j MAXLLF=LLF
IF (,1AXLLF.G5!'LLF) GO TO0 160

150 A=A*DRlLTA
160 A=AS

C
COMMENT APC AND NOD, SPA1RCH ON THE BOUNDARIES OF TH.P FEASIBLE PFGION
C

DO 170 T=1,3
CALL &q(X,N.XBk.A,,BC.LT)PTeMAXLLFI.A&(I).BB(I),.CC(I),LIKE(l))

170 CALL NODE(N.XBARLO(;X&.B.CoIAXLLF.I.
2AA (l+3) ,BB (T+3) .CC (T+3) *LTKE(I 3))

C
COARfENT OUTPUT COMPUTV"IONS FOLLOW

SSQ=O

Do 180 1=1.3
DO 180 J=103

180 D(I.J)0O
DO 190 T=1,w

190 Sb$.p$SQ+(XI)-XBA!)**2

IIPITS (3.1) I4.XBA.FSSQ.DETTkokB#C

IF (A*.Pg.0. AND.B.oLT.C) 1=1
IF (A. R0. BeAND. B. LT. C) I=2
IF (A, LT. BeAN Do BeEO.C) 1=3
IF (h.EQo.AND.B.FQ.O) T=4
IF (A. E. o.AN r. s E. Qc) 1=5

VIF (A,'.V0. AND. R * Q.C) I =f
IF (I.F0.O) GO TO 200
WFITE (3.2) 1
GO TO (450

200 DO 310 T=1,15
CALL COMMItT (Y (I) ,1 B.C.,ht1vH(1) FP)
CALL ':CMPUT (Y (1) *1 A,C,,R,1, H(2) F)
CALL COM'PJT (Y (1)#I).1A@BC,1,H(3) *F)

PIP)P
DO 300 J=1*3
DO 300 K=J,3

300 D N. K1=D WeK) 0 J I* It(KI * F*W (1)
DEN(DM0(1.1 *D (2 #2) *1(3, 3) .2, D It 2) 1)(2e 31 D(1 3)

-D,2 D0r3)*2n3 )*t52 *- li * 23 *1*
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COV (lq1) (D (2,2) *D(3,3) -0(2,3) **2) /DIPN
COV(1,2) =(-D 0 2) *D(3,?3)4D(le 3) *D(2,,3)) /DEN

COV (2, 3)=(-D (I ,1) *D(2,3) +D(1,,2) *D (1, 3))f/DEN
COy (3, 3) = (D0(1. 1) *D(2,2) -D(1,2)**2) /DEN
DO 400 T=1,3
Do 1400 J-1.3

1400 CORR(I,J)=COV(IJ)/SQRT(COV(r.l)*COV(J,,J))
WRIT.E (3,3) COV(01v1) COV(0 2)#CO V(01#3)vC OV (2 ,2).Co V(2 3) ,

2COV (3,3) .CORR (1,1) ,COR1R(1.2) ,CORR(1, 3) eCOPR (2,2),COPR (2,3) p
3COHE (3,)

C
COMMENT CHC HYPOTH?SrS 1,2 AND 3
C

CALL HYP123(X.,NXBkRLOGX,D'PýLTA.MAXtLF,AA,BBCC,LTKF.)
C
COMMENT CHECK HYPOTHESIS 4i,5 AND 6
c

DO 500 I=1,3
500 CALL ERLANG (NXBAP*LOGX,,MIXLLFI)

END

DOUBLE PRECISION FUNCTION G(YoTHET&,PHI.RHO)
C
COMMENT COMPUTPS THETA*!XP (-Y/THSTA ) /((THETA-PH I) *(TIIIT f-RHO))
C

PEAL PHtI.IHOS,TIIETAoY
REAL*B APG*CHECK*ZvZZtZZ
G=0
IF (THETA.MQ..) RETURN
A.PG= Y/THVTA
S=1.
Z=THuTA/i (THETA-PHI)* (TH)ITA-RHO))I
IF (Z.LT.0.) Sw-S
IF MAG. L11 1714,673) GO TO 25

10 ARG=-ARG+DLOG (DABS (Z))
IF (AG.LT.-180.218) PltTI3N
G=S*DSXP IARG)
RETURIN

25 ZZZ=DRXP fARG)
CHE!CK= (IOD-781 *zzz
ZZ%-DABS(z)
IF IZZ.tT.CdIECIC) PITURN
G=Z/3ZZ
RETIuRN
END
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SUBRUTJTINt UPDATI8(X.N.XBA~,LCUC.AB.C.DELTA.J,LLP)

C

INTEGE? J,N
REAL A.BC.CC.DEL,DELTADEgIYC.LCLLPr1C.U(12)hX(N),rK8APV(16)
DATAV0.0O.1,.00.eie.Oe.O. .00.2/
DATA 1.5./
CC= (LC+UC) /2*

100 CcCC
B=XBAR*W (J) +k*W (J+4~) +C*W (J+8)
A=XB&R*V (3) +AV (J+4) +B*V (3+8) +C*V (J+12)
CALL C0MPUT (XNeAeB.CJDRIVCeLLF)
IF (DZRTVC.GEL0) LC=C
IF (D9RIVCýLl0) UC=C
CC=(LC+UC)/2.
DELmABS (C-CC)
IF fDZL.GT.DEL'I'&) GO TO 100
RET URN
END

SUBROUTINE' C0MPUT(Y*MvT,P*R*J.D3?IVCoLL?)
C
CONMENT COM(PUTES LOGLTKUIT0OD DSVIVATTV1 VIITH RESPtCT TO C
C

INTIGr? I*JK,KI
REAL DlPTVC.LLF*PRt?,YQ',)
B'IAL*8 1 2 .G*GP*GP*GT
LLFt:0

GO TO (100,200,300*400), J
100 Do 150 K=1.N

GT=G (Y (K) ,T#P#Fl

4GR=G(Y (K) #B.T.P)

LLFwLL?4.DL0G(?')
GTwGT/F
GP=GP/P
GR=(;U/p

150 DEPI WC-I~PTPVC+CP* (1./P*Y (K) /R* 21./(P-9 +1 ./(*-B) I

200 DO 250 K-l.M
GPwG (V (K) ,P#RoO)
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GR=G(Y (K) P,P,O)
F=GP+(;F
LLF=LLFfDLOG (F)

GP-P/F
GP =(;l/F

250 DE I VC =Pv.P VC+G P/(P-F) +Ip* (Y (K) /R 2- 1. / P)
PVT IRN

300 DO 350 K-1,M
G;P=G (Y (K) , PR ,F)
GR=G (YfK) *R, P,P)
F=G FGP ( (P-F) *Y (K) P*D) /P**2
LLF=LLF+DLOG(F)
GP=GUP/
G F =(; Ri/F

350 DdF IVC= D FTVC+ ( 1./F +Y (K /,P* 2-2. /(Bp-)2GP* ((P- P) "Y K) + P* (P+R)/ (R- PI P** 2)

RETURN
$ $00 DO 450 K-I.M

(jTZ; (Y (K) oT,R, F)
Y•: M•(K , P, T #T)

Li'F LLF+DLOG (?)

G i8 = tr R /9~
450 DEF IVCzD•tF 1 VC 0 f.c&T/(T- Fp)2 +GR 0( ( i -T) *Y( M -T*P) + Y 01 tB4* 2- 1. /R-2..IF +Y (K -T) /B**2

RFTURW
RND

SUDROUtiN.: RC(X,N#XBAPAffC*DlLTA , lXLLF, 1, AA. 90, CC.L KF)c
COHMENT CO03PIYTES SOLIIt.ONS POP ýPCS AND APPLIES TO IHYPOTOI•SRS 1*2 AND IC

RRAL
DA1TA U1.5,. l 3 31*1*,/CAtL !t~i2ATP (Ze, N XI'Ii;,XOAP*II (Ct) *. XBAPett (I3.]|, A, DB, CCDt.TA ,414.

2LIKE)

AvAA
U •3I)I
C=cc
MAILL-! LI.KP
ET1R N

E•;i
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ISUB1BOUTTNF ONXAOXABCALFIABCIF
COMME~NT COMPIUTýS SOLUTTC'NS FOP NODES AND APPLIES TO HYPOTHESES 4&,5,6

INTEGER~ I.N

DATA 1W/O.,O.,.333333,0...S..33J333.1.o,.5o.333333/,LOG2/.6931'47/

BB=X BAP* W (1+3)

CC=XBAP*W (1+6)
IF (LLF.GT.LIIKE) VRTUFN

B=BB

MIAXLLF=LIK'P

~ ~. END

SUBROUTTME HlYP123(X.N.XLUP,LOGX.DFEtT&.MAXLLF.&ABBCC,LIKT)

COMMENT~ PERFORM~S OUTPtll* ANALYSES POP HYPOTHRSRS 1*2 AND 3

REAL A , 4 AV-C.CCB(6),CIoCCC.1CPBCC.CC,CCB.CCC.CCBCCECDPXITA,
2 0(2.2) .D?N.,Hot3.HC.LIKF(6) *LOGXLPIATIO.?iAXLLF, U(6).'W115).*71 j3 X(RI) *I(BAPIY (IS)

~~. ~ DATA K1 .e,.I121
t ~~~DATA /5.33333.1,.1./
$.DATA W/.2395781703..$601('828,.B9P7~002629,).22366QLS0215,

I 1.5741U172163e1.94475197653. 2. 3Q15O2056642.77(aO419268:I.
53 3. 2$ 56431460 0.3 SO631171423,4.45847775344,5.27001-778461,~

I DATk Y/.O9)33O7R12O,.4926974Q3,1.215S1dU121.2.2639495262,
I2 ft7f 217 21 P .5. 2 53 36 627 4, ?. 5 6 S 16 2 266. 10. 12 02 2U68 60 ,

S,, I 111041P21.547O320767B142.29429
11069 3,106 Sp3O6BS.O02F 009S'72 7/

I FOiit k T IY VOT1PS TS I: AmO. B<C4Cf/)
2 F38tiAlis~PtI~~2 AP~'f

1 3 FORMATr(tI Ify POTi1pSIs 3: -A<=d1=C 01A

f 20TIMSIS '~.!2/////)
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5 FORNAT(22X.OB~~.?j3q6.5X,.C=,El3.6//9X,'VAP(.B)='pF13.6,5X,'VAP(C)
2=4 E13.6,SX.ICOV(BC)=',EI3.6//28Xu'COPR(B,C)=*,EI3.6//25X, LTKEL1
3HOOD RATto=oE13..6/////)

6 FORflAT(22X*A=','P13.6,5X,'C='.F13.6//9X.IVARt(A)='.E13.6,5X.'VAB(C)
2=9 13.6,SX.tCOV(AC)=O,r13.6"/281,'COPR(AC)=lEl3.6//25x, LIKELI
3H000 RATIO=%!1l3.6/////)
DO 500 1=1.3
IF (I.EQb1) WRITR (3,1)

IF (I.!Qo.3) VRTTE (3#3)
L= 0
KA=K (I)
KB=K (143)
KC=KI (+61
L=I
DO 100 J=KA.KBKC

IFP (LIKE (1).LT. LIKE!( Wl L=JJ

B=BB(L)
C=CC(L)

L=O
IF (A*7Q0.&W~kD.B-FQ.O) L=4
IF lA.EQ.OAND.B*FQ.C) L=5
IF (A.QU.B.AND.B.RQ.C) L=6
IF (L.LT.'4) GO TO 150

GO TO SOO
150 LPATIOLiP (LIKE (1) -AXtLP)

Do 175 Jt-1.2
DO 175 LzJ.2

175 D(JL)=0
DO 4675 J=1.15
GO TO (200,300,4400), 1

200 CALL COMPU1T (YJ0 , I, k.C, Do2, H8, F)
CALL C0MPtJTfY(J),1.A8*C*2#UCF)
GO TO 4650

300 CALL C0MPtfT'rTv()*1.C,9.A.Q.*8,r)
CALL COMPUT(Y(J).1.A.B.C.3.UCPI
GO TO '450

4600 CALL C0MPUTfY(J) ,1,CB,BA,3,H8.F)
CALL COMPIJ'(Y(J),1.A.8.C#4*HIC.F)

'450 F=EKP(7)
D0(,1.1 =D I 1 1) 0t8**20POW (3)
D (2. 2) =D 12. 2) +HC'*2*F'V (3)

67 D(1, 2)-D (1,2) +iB*IICOPO*(J)
*DES=(D 11) OD (2 *2) -0D0, 2002) Ow
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* CBB=D (2, 2)/DEN

C8C=-D(1,2)/DEN

*~ ~~ CB= DF (1 ,2.) /SIT ( (31,5) BD(,CBC2)CCBCLKI
IF (I.MQ.) WRITE (3,5) B,C,CBBCCCCBC,CCBC,LRATIO

-. .IF (1.1Q.3) WRITE (3,6) ACCBC,CCC,CBC,CCBC.LPATIO
500 CONTINUT

RETURNI
END

SUBROUTIN? ERLANG(NXBA'PLOGXrAYLlF,I)
4 C

COMMENIT PtHFORS OUTPUT ANALYSES FOR HYPOTHESIES 4,.5 AND 6

INTEGER 1,N
VEAL CCHISQDF,LC,LLF.LOG2,LOGX.LRATIOvftAXLLFUC,.' (3) .XBAR
DATA WO0.1/LOG2f.6931(47/

I FORMAT(` HYPC'THESTS 4: A=B=01//)
2 FORMAT(V HYPOTHESIS 5: A=0, B=C"//)
3 FORE¶&T( HYPOTHESIS 6: &=B=C'//)
'4 FORMp.(32X.'C=',1E13.6//8x.'.95 LOWER POINT='*,E13.6v551.'.95 UPPEP P

20TNT~f,Zl3.6//25X,'LIKELIH0OD RATIO='#R13.6/////)
C=XBAR/I
DP=2. *I*N
LC=DF*C/CHISQ(DF..975)
UC= D F*C/C HI Q (DF, .0 25)
LLF=- N* (I * (1. +ALG(C) ) +W(1) *LOG 2) + I1) *LOG X
LR ATIO=Z XP (LL F- F1A XLLF1
IF (I.KQ.1) WRITE (3*1)

IF (1.20.2) WRIT3 (3,2)
IF (I.VQ.3) WRIT? (3,3)
WBITB (3#4) C.LCUClLRATIQ
RETURN
END



FUNCTION CHISO (DF.P)

COINENT COMPUTFS CRIT-ICAL VALUE or cHi-sQuApz Fop PROBlABILITY P
C IND OF DSGZBEES OF FREEDOM

INTEGER I
REAL C (3) D (3)
RELL DF.PuQ.TXP,NUN,'YENY,YSQDF*SQHALpeY2.Y3.Y4.y5,6Yy7oH(7)
DATA 0C/2.5155l7..802853,.010328/.D/1.t&32788*.189269 .001308/
RUN=

Q= P
IF (P.Lg.5S) GO TO 5

5 T=SQRT(ILCG(l./Q**2))
DO 10 I1=13
NUH=NUN4C (I)*T**(I-1)

-, 10 DEN= DBWN+(1) *r* *1
XPaT-N UH/DEN
IF (P.GZ*.5) SO TO 15
KP=-XP

15 Y=XP
* SQDF=SQIT (DF)

SO14&L?=SQt'.-(.5)

Y3uY*Y2
Y4=Y3*Y
Y5=Y4*Y
Y6'YS5Y

It(1) -Y /S OHALP

H (3) (YM-7. *Y)*SQHALp/9.
Nt (4) m- f6*YT4141. *Y2-32.) /4~05.
H (5) i(9. OYS +256. *Y 3.a3 3. *) *S OH ALF/L860.

CHIS0=1.
I00 20 I'31*7

20 CHKSQ=-CIIISO+H M /SODp**l
CHISQwCHXSQ*Dt
RETUJRN
END
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20. Abstract cont. I
implementation of the likelihood ratio for testing six hypotheses that arespecial cases of interest. A set of FORTRAN subroutines for executing these
procedures appears in the Appendix

6gCUmsiy C6AMP(CATIOI4 MVF TH4 PAQC(.n4 Date Raw**)
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